Radial Basis Function Neural Network-Based Super-Twisting Blade Pitch Controller for the Floating Offshore Wind Turbine - Université de Technologie de Belfort-Montbeliard
Communication Dans Un Congrès Année : 2024

Radial Basis Function Neural Network-Based Super-Twisting Blade Pitch Controller for the Floating Offshore Wind Turbine

Résumé

The study introduces a novel Radial Basis Function Neural Network-based Super-Twisting Sliding Mode Collective Blade Pitch Control (RBFNN-STSM-CBPC), designed specifically for semi-submersible platform-based Floating Offshore Wind Turbines (FOWTs) operating above rated speed (Region III). The proposed composite controller is developed using a refined nonlinear Control-Oriented Model, including lumped unmodeled dynamics and external disturbances. To our knowledge, this is the first time that a neural network STSM-CPBC approach is designed for this application. The RBFNN operates as an adaptive observer for the lumped disturbance, enhancing the robustness and performance of the standard STSM-CBPC for the same gains. Its adaptive law, formulated through the Lyapunov method, ensures stability and convergence by adjusting the adaptive weight. Simulation results demonstrate the superiority of the RBFNN-STSMCBPC over the standard STSM-CBPC method in regulating rotor speed and mitigating platform motion.
Fichier principal
Vignette du fichier
f401e1ba-d9b7-4817-8d5b-47696e3aa795-author.pdf (780.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04780806 , version 1 (13-11-2024)

Identifiants

  • HAL Id : hal-04780806 , version 1

Citer

Flavie Didier, Yongchao Liu, Salah Laghrouche. Radial Basis Function Neural Network-Based Super-Twisting Blade Pitch Controller for the Floating Offshore Wind Turbine. International Conference on Control, Decision and Information Technologies, Jul 2024, Valetta, Malta. ⟨hal-04780806⟩
0 Consultations
0 Téléchargements

Partager

More