Learning Semantic Structure through First-Order-Logic Translation - Méthodes et Ingénierie des Langues, des Ontologies et du Discours
Communication Dans Un Congrès Année : 2024

Learning Semantic Structure through First-Order-Logic Translation

Résumé

In this paper, we study whether transformerbased language models can extract predicate argument structure from simple sentences. We firstly show that language models sometimes confuse which predicates apply to which objects. To mitigate this, we explore two tasks: question answering (Q/A), and first order logic (FOL) translation, and two regimes, prompting and finetuning. In FOL translation, we finetune several large language models on synthetic datasets designed to gauge their generalization abilities. For Q/A, we finetune encoder models like BERT and RoBERTa and use prompting for LLMs. The results show that FOL translation for LLMs is better suited to learn predicate argument structure.

Fichier principal
Vignette du fichier
emnlp-1-1.pdf (245.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04829344 , version 1 (10-12-2024)

Identifiants

  • HAL Id : hal-04829344 , version 1

Citer

Akshay Chaturvedi, Nicholas Asher. Learning Semantic Structure through First-Order-Logic Translation. EMNLP2024, Association for Computational Linguistics, Nov 2024, Miami (FL), United States. pp.6669-6680. ⟨hal-04829344⟩

Partager

More